Report for a single estimator#

The class EstimatorReport provides a report allowing to inspect and evaluate a scikit-learn estimator in an interactive way. The functionalities of the report are accessible through accessors.

EstimatorReport(estimator, *[, fit, ...])

Report for a fitted estimator.

Methods

EstimatorReport.help()

Display report help using rich or HTML.

EstimatorReport.cache_predictions([...])

Cache estimator's predictions.

EstimatorReport.clear_cache()

Clear the cache.

EstimatorReport.get_predictions(*, data_source)

Get estimator's predictions.

Accessors

EstimatorReport.data

The data accessor helps you to get insights about the train and test datasets.

EstimatorReport.inspection

Accessor for model inspection related operations.

EstimatorReport.metrics

Accessor for metrics-related operations.

Data#

The data accessor helps you to get insights about the dataset used to train and test your estimator.

EstimatorReport.data.help()

Display accessor help using rich or HTML.

EstimatorReport.data.analyze([data_source, ...])

Plot dataset statistics.

Metrics#

The metrics accessor helps you to evaluate the statistical performance of your estimator.

EstimatorReport.metrics.help()

Display accessor help using rich or HTML.

EstimatorReport.metrics.summarize(*[, ...])

Report a set of metrics for our estimator.

EstimatorReport.metrics.accuracy(*[, ...])

Compute the accuracy score.

EstimatorReport.metrics.brier_score(*[, ...])

Compute the Brier score.

EstimatorReport.metrics.confusion_matrix(*)

Plot the confusion matrix.

EstimatorReport.metrics.custom_metric(...[, ...])

Compute a custom metric.

EstimatorReport.metrics.log_loss(*[, ...])

Compute the log loss.

EstimatorReport.metrics.precision(*[, ...])

Compute the precision score.

EstimatorReport.metrics.precision_recall(*)

Plot the precision-recall curve.

EstimatorReport.metrics.prediction_error(*)

Plot the prediction error of a regression model.

EstimatorReport.metrics.r2(*[, data_source, ...])

Compute the R² score.

EstimatorReport.metrics.recall(*[, ...])

Compute the recall score.

EstimatorReport.metrics.rmse(*[, ...])

Compute the root mean squared error.

EstimatorReport.metrics.roc(*[, ...])

Plot the ROC curve.

EstimatorReport.metrics.roc_auc(*[, ...])

Compute the ROC AUC score.

EstimatorReport.metrics.timings()

Get all measured processing times related to the estimator.

Inspection#

The inspection accessor helps you inspect your model by e.g. evaluating the importance of the features in your model.

EstimatorReport.inspection.help()

Display accessor help using rich or HTML.

EstimatorReport.inspection.coefficients()

Retrieve the coefficients of a linear model, including the intercept.

EstimatorReport.inspection.impurity_decrease()

Retrieve the Mean Decrease in Impurity (MDI) of a tree-based model.

EstimatorReport.inspection.permutation_importance(*)

Report the permutation feature importance.