CrossValidationReport.feature_importance.coefficients#
- CrossValidationReport.feature_importance.coefficients()[source]#
Retrieve the coefficients across splits, including the intercept.
- Returns:
FeatureImportanceCoefficientsDisplayThe feature importance display containing model coefficients and intercept.
Examples
>>> from sklearn.datasets import make_regression >>> from sklearn.linear_model import Ridge >>> from skore import CrossValidationReport >>> X, y = make_regression(n_features=3, random_state=42) >>> report = CrossValidationReport( >>> estimator=Ridge(), X=X, y=y, splitter=5, n_jobs=4 >>> ) >>> display = report.feature_importance.coefficients() >>> display.frame() Intercept Feature #0 Feature #1 Feature #2 Split index 0 0.064837 74.100966 27.309656 17.367865 1 0.030257 74.276481 27.571421 17.392395 2 0.000084 74.107126 27.614821 17.277730 3 0.145613 74.207645 27.523667 17.391055 4 0.033695 74.259575 27.599610 17.390481 >>> display.plot() # shows plot